57 research outputs found

    Sterilizing Activity of Second-Line Regimens Containing TMC207 in a Murine Model of Tuberculosis

    Get PDF
    The sterilizing activity of the regimen used to treat multidrug resistant tuberculosis (MDR TB) has not been studied in a mouse model. (TB) strain H37Rv, treated with second-line drug combinations with or without the diarylquinoline TMC207, and then followed without treatment for 3 more months to determine relapse rates (modified Cornell model).Bactericidal efficacy was assessed by quantitative lung colony-forming unit (CFU) counts. Sterilizing efficacy was assessed by measuring bacteriological relapse rates 3 months after the end of treatment.The relapse rate observed after 12 months treatment with the WHO recommended MDR TB regimen (amikacin, ethionamide, pyrazinamide and moxifloxacin) was equivalent to the relapse rate observed after 6 months treatment with the recommended drug susceptible TB regimen (rifampin, isoniazid and pyrazinamide). When TMC207 was added to this MDR TB regimen, the treatment duration needed to reach the same relapse rate dropped to 6 months. A similar relapse rate was also obtained with a 6-month completely oral regimen including TMC207, moxifloxacin and pyrazinamide but excluding both amikacin and ethionamide.In this murine model the duration of the WHO MDR TB treatment could be reduced to 12 months instead of the recommended 18–24 months. The inclusion of TMC207 in the WHO MDR TB treatment regimen has the potential to further shorten the treatment duration and at the same time to simplify treatment by eliminating the need to include an injectable aminoglycoside

    Management of emerging multidrug-resistant tuberculosis in a low-prevalence setting

    Get PDF
    AbstractMultidrug-resistant (MDR) tuberculosis (TB) is an emerging concern in communities with a low TB prevalence and a high standard of public health. Twenty-three consecutive adult MDR TB patients who were treated at our institution between 2007 and 2013 were reviewed for demographic characteristics and anti-TB treatment management, which included surgical procedures and long-term patient follow-up. This report of our experience emphasizes the need for an individualized approach as MDR TB brings mycobacterial disease management to a higher level of expertise, and for a balance to be found between international current guidelines and patient-tailored treatment strategies

    Rapid Evaluation in Whole Blood Culture of Regimens for XDR-TB Containing PNU-100480 (Sutezolid), TMC207, PA-824, SQ109, and Pyrazinamide

    Get PDF
    There presently is no rapid method to assess the bactericidal activity of new regimens for tuberculosis. This study examined PNU-100480, TMC207, PA-824, SQ109, and pyrazinamide, singly and in various combinations, against intracellular M. tuberculosis, using whole blood culture (WBA). The addition of 1,25-dihydroxy vitamin D facilitated detection of the activity of TMC207 in the 3-day cultures. Pyrazinamide failed to show significant activity against a PZA-resistant strain (M. bovis BCG), and was not further considered. Low, mid, and high therapeutic concentrations of each remaining drug were tested individually and in a paired checkerboard fashion. Observed bactericidal activity was compared to that predicted by the sum of the effects of individual drugs. Combinations of PNU-100480, TMC207, and SQ109 were fully additive, whereas those including PA-824 were less than additive or antagonistic. The cumulative activities of 2, 3, and 4 drug combinations were predicted based on the observed concentration-activity relationship, published pharmacokinetic data, and, for PNU-100480, published WBA data after oral dosing. The most active regimens, including PNU-100480, TMC207, and SQ109, were predicted to have cumulative activity comparable to standard TB therapy. Further testing of regimens including these compounds is warranted. Measurement of whole blood bactericidal activity can accelerate the development of novel TB regimens

    Animal welfare in studies on murine tuberculosis : assessing progress over a 12-year period and the need for further improvement

    Get PDF
    There is growing concern over the welfare of animals used in research, in particular when these animals develop pathology. The present study aims to identify the main sources of animal distress and to assess the possible implementation of refinement measures in experimental infection research, using mouse models of tuberculosis (TB) as a case study. This choice is based on the historical relevance of mouse studies in understanding the disease and the present and long-standing impact of TB on a global scale. Literature published between 1997 and 2009 was analysed, focusing on the welfare impact on the animals used and the implementation of refinement measures to reduce this impact. In this 12-year period, we observed a rise in reports of ethical approval of experiments. The proportion of studies classified into the most severe category did however not change significantly over the studied period. Information on important research parameters, such as method for euthanasia or sex of the animals, were absent in a substantial number of papers. Overall, this study shows that progress has been made in the application of humane endpoints in TB research, but that a considerable potential for improvement remains.Nuno H. Franco is funded by Fundação para a Ciência e Tecnologia (SFRH/BD/38337/2007). This work is funded by FEDER funds through the Operational Competitiveness Programme - COMPETE and by national funds through FCT - Fundação para a Ciência e Tecnologia under the project FCOMP-01-0124-FEDER-022718 (PEst-C/SAU/LA0002/2011

    Rifapentine access in Europe: growing concerns over key tuberculosis treatment component

    Get PDF
    [No abstract available]Support statement: C. Lange is supported by the German Center of Infection Research (DZIF). All other authors have no funding to declare for this study. Funding information for this article has been deposited with the Crossref Funder Registry

    Structural Insights into the Quinolone Resistance Mechanism of Mycobacterium tuberculosis DNA Gyrase

    Get PDF
    Mycobacterium tuberculosis DNA gyrase, an indispensable nanomachine involved in the regulation of DNA topology, is the only type II topoisomerase present in this organism and is hence the sole target for quinolone action, a crucial drug active against multidrug-resistant tuberculosis. To understand at an atomic level the quinolone resistance mechanism, which emerges in extensively drug resistant tuberculosis, we performed combined functional, biophysical and structural studies of the two individual domains constituting the catalytic DNA gyrase reaction core, namely the Toprim and the breakage-reunion domains. This allowed us to produce a model of the catalytic reaction core in complex with DNA and a quinolone molecule, identifying original mechanistic properties of quinolone binding and clarifying the relationships between amino acid mutations and resistance phenotype of M. tuberculosis DNA gyrase. These results are compatible with our previous studies on quinolone resistance. Interestingly, the structure of the entire breakage-reunion domain revealed a new interaction, in which the Quinolone-Binding Pocket (QBP) is blocked by the N-terminal helix of a symmetry-related molecule. This interaction provides useful starting points for designing peptide based inhibitors that target DNA gyrase to prevent its binding to DNA

    Efficient Intermittent Rifapentine-Moxifloxacin-Containing Short-Course Regimen for Treatment of Tuberculosis in Mice

    No full text
    Long-half-life drugs raise the hope of once-a-week administration of antituberculous treatment. In a previous study with the murine model of tuberculosis, the most active intermittent regimen which contained rifapentine (RFP), isoniazid (INH), and moxifloxacin (MXF) given once a week during 5.5 months, preceded by 2 weeks of daily treatment with INH, rifampin (RIF), pyrazinamide (PZA), and MXF, was less active than the standard 6-month daily RIF-INH-PZA regimen. We evaluated with the same model similar regimens in which we increased the dosing of rifapentine from 10 to 15 mg/kg of body weight and of moxifloxacin from 100 to 400 mg/kg. Mice infected intravenously by 6.2 ×10(6) CFU of Mycobacterium tuberculosis H37Rv were treated 2 weeks later when infection was established. After 6 months of treatment, all mice had negative lung culture. After 3 months of follow-up, no relapse occurred in the two groups that received moxifloxacin at 400 mg/kg, whatever the dosage of RFP, and in the group receiving the standard RIF-INH-PZA control regimen. In contrast, in the two groups receiving moxifloxacin at a lower dosage, the relapse rate was significantly higher (13% in mice receiving RFP at 15 mg/kg and 27% in those receiving RFP at 10 mg/kg). Finally, the fully intermittent once-a-week regimen (26 drug ingestions) of INH, RFP (15 mg/kg), and MXF (400 mg/kg) led to a relapse rate of 11%. In conclusion, when used at high dosage, rifapentine and moxifloxacin are very efficient when combined with isoniazid in a once-a-week treatment in mouse tuberculosis

    Molecular Investigation of Resistance to the Antituberculous Drug Ethionamide in Multidrug-Resistant Clinical Isolates of Mycobacterium tuberculosis▿

    No full text
    Ethionamide (ETH) needs to be activated by the mono-oxygenase EthA, which is regulated by EthR, in order to be active against Mycobacterium tuberculosis. The activated drug targets the enzyme InhA, which is involved in cell wall biosynthesis. Resistance to ETH has been reported to result from various mechanisms, including mutations altering EthA/EthR, InhA and its promoter, the NADH dehydrogenase encoded by ndh, and the MshA enzyme, involved in mycothiol biosynthesis. We searched for such mutations in 87 clinical isolates: 47 ETH-resistant (ETHr) isolates, 24 ETH-susceptible (ETHs) isolates, and 16 isolates susceptible to ETH but displaying an intermediate proportion of resistant cells (ETHSip; defined as ≥1% but <10% resistant cells). In 81% (38/47) of the ETHr isolates, we found mutations in ethA, ethR, or inhA or its promoter, which mostly corresponded to new alterations in ethA and ethR. The 9 ETHr isolates without a mutation in these three genes (9/47, 19%) had no mutation in ndh, and a single isolate had a mutation in mshA. Of the 16 ETHSip isolates, 7 had a mutation in ethA, 8 had no detectable mutation, and 1 had a mutation in mshA. Finally, of the 24 ETHs isolates, 23 had no mutation in the studied genes and 1 displayed a yet unknown mutation in the inhA promoter. Globally, the mechanism of resistance to ETH remained unknown for 19% of the ETHr isolates, highlighting the complexity of the mechanisms of ETH resistance in M. tuberculosis
    corecore